Collective flow - theory highlights

Denes Molnar

RIKEN/BNL Research Center & Purdue University

Joint CATHIE/TECHQM Workshop

Dec 14-18, 2009, RIKEN BNL Research Center, Upton, NY

O(20) speakers - sorry if I left anyone's favorite slides out

Goal: measure QCD matter properties (EOS, transport coefficients)

collective flow signatures play a crucial role in this

3D-Hydro + Micro Model

full 3-d ideal RFD

QGP evolution

Hadronization

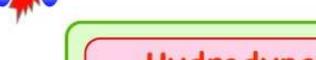
Cooper-Frye formula Monte Carlo UrQMD

hadronic rescattering

 T_c

TSW

t fm/c



Hydrodynamics

- · ideally suited for dense systems
- model early QGP reaction stage
- well defined Equation of State
- parameters:
- initial conditions
- Equation of State

micro. transport (UrQMD)

- no equilibrium assumptions
 - > model break-up stage
 - > calculate freeze-out
 - > includes viscosity in hadronic phase
- parameters:
 - (total/partial) cross sections

matching condition:

- · use same set of hadronic states for EoS as in UrQMD
- \bullet generate hadrons in each cell using local T and μ_{B}

S.A. Bass & A. Dumitru, Phys. Rev C61 (2000) 064909

D. Teaney et al, nucl-th/0110037

T. Hirano et al. Phys. Lett. B636 (2006) 299

C. Nonaka & S.A. Bass, Phys. Rev. C75 (2006) 014902

Soltz (

2+1D viscous hydro + transport Configurations for initial Run

- Fully automate: preFlow+UVH2+UrQMD+CoRAL(HBT)
- Initial set of runs
 - b=5.5 fm (Wounded Nucleon)
 - pre-Flow on/off
 - T_{initial} = 0.35,0.33,0.31 GeV
 - T_{freeze-out} = 0.15 (CF viscous corrections)
 - $-\eta/s = 0.08$

(0.16, 0.24 next)

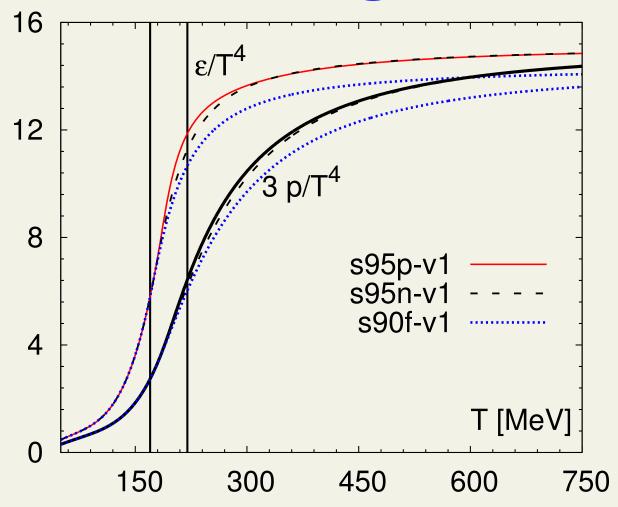
- EOS is vh2 default (full LQCD EOS next)
- No parameters are tuned
 - still checking distributions, last bug-fix was Friday
 - model results unvarnished, data comparisons are scant

Requires several ingredients:

- knowledge of matter properties Huovinen, Prakash, Bass
- initial conditions Venugopalan, Dumitru, Steinberg
- dissipative hydro results and tests
 Song, Monnai, Denicol, DM, Teaney, El, Niemi
- corroborating observables, such as conical flow Majumder, Neufeld, Xu

Matter properties

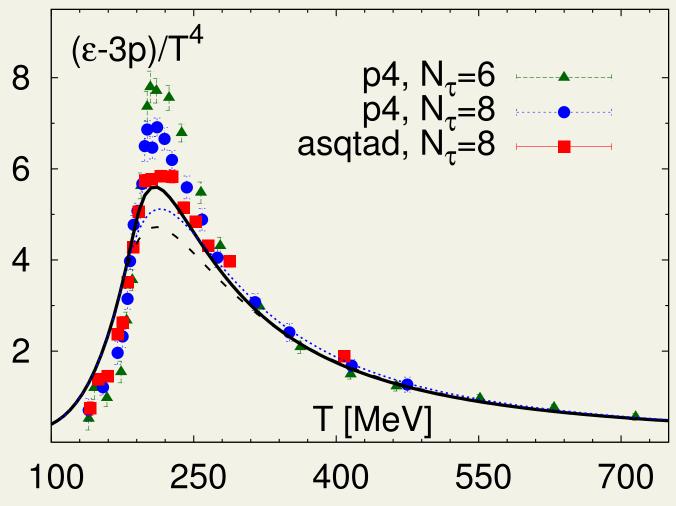
Phenomenological EoS



• pressure from

$$\frac{P}{T^4} - \frac{P_0}{T_0^4} = \int_{T_0}^T dT' \frac{\epsilon - 3P}{T'^5}$$

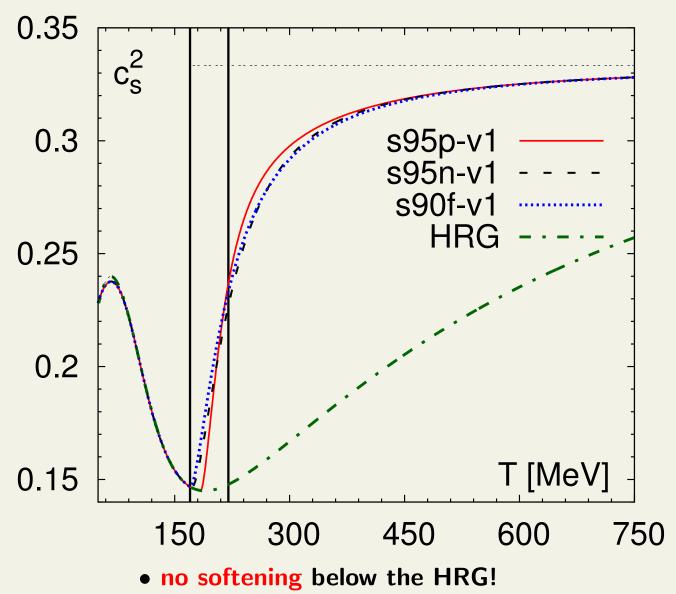
Interaction measure



 \bullet For the 95% s_{SB} limit we get

$$T_0=171.8$$
 MeV, $d_2=0.2654$, $d_4=6.563\cdot 10^{-3}$, $c_1=-4.370\cdot 10^{-5}$, $c_2=5.774\cdot 10^{-6}$, $n_1=8$, $n_2=9$

Speed of sound



relaxation times for binary mixture

Relaxation times for mixtures

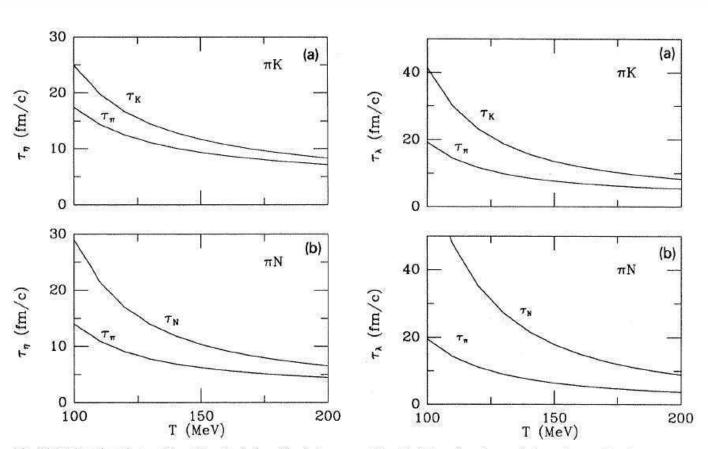


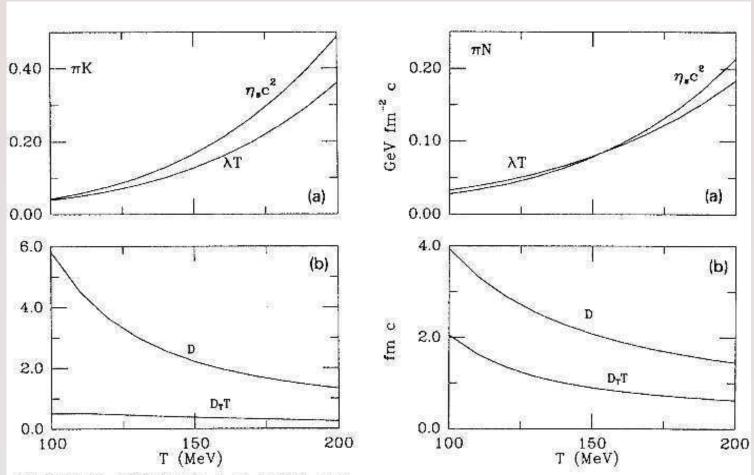
Fig. 13. Relaxation times of heat flow in (a) a πK mixture and (b) a πN mixture from eq. (5.4).

Fig. 14. Relaxation times of shear viscous flow in (a) a πK mixture and (b) a πN mixture from eq. (5.6).

Note: The ratio of nucleon to kaon relaxation times is nearly unity at T=200 MeV, whereas at T=100 MeV, the ratio is nearly $m_N/m_{K_{20/21}}$

transport coeffs for binary mixture

Results for binary mixtures



10. Transport coefficients in a πK mixture using (C.6) through eq. (C.9). (a) Shear viscosity and rmal conductivity. (b) Diffusion and thermal diffusion fficients.

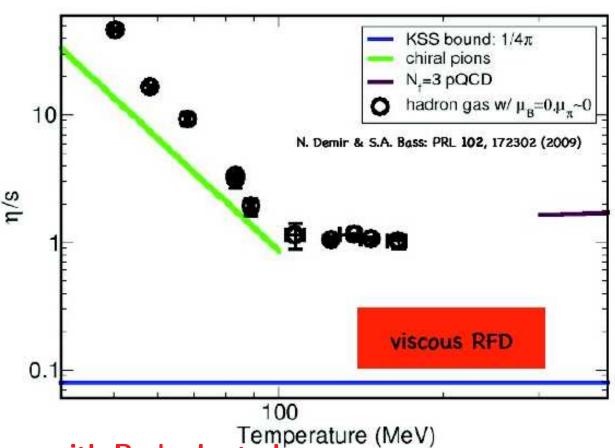
Fig. 11. Transport coefficients in a πN mixture. (a) Shear viscosity and thermal conductivity. (b) Diffusion and ther mal diffusion coefficients.

Results for multicomponent systems, and inelastic interactions are coming. $\frac{16}{21}$

n/s of a Hadron Gas

first reliable calculation of of η/s for a full hadron gas including baryons and anti-baryons

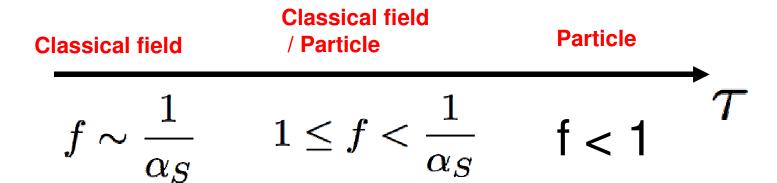
- low temperature trend qualitatively confirms chiral pion calculation
- above T=100 MeV: η/s≈1 remains roughly constant
- η/s is a factor of 3-5 above range required by viscous RFD analysis!
- breakdown of vRFD in the hadronic phase?
- what are the consequences for n/s in the deconfined phase?



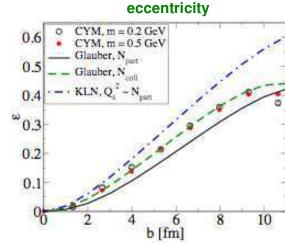
Would be nice to compare with Prakash et al...

Initial conditions

Venueppalan Matching Glasma dynamics to Hydro



- Current matching of LO Glasma YM computations to hydro - "CGC initial conditions"assumes instantaneous thermalization
 0.6
- PBut $T_{\mu\nu}$ is far out of equilibrium in LO computations $p_z\sim 0$
- ➤ No computations to date fully take into account NLO contributions that are as large as LO and should be resummed...



Venugopalan Rapid isotropization in the Glasma

Resum
$$\left(\alpha_S \exp(\sqrt{Q_S au})^n\right)$$
 - extend range of YM-dynamics

$$\begin{array}{ll} \left. \langle T^{\mu\nu}(\tau,\eta,x_\perp) \rangle \right|_{\frac{\text{LLog}}{\text{resum}}} &= \int [D\rho_1\rho_2] \, W_{Y_1}[\rho_1] \, W_{Y_2}[\rho_2] \\ \\ \times &\int [Da] \, G_{\tau}[a] \, T_{\text{LO}}^{\mu\nu}[A_{\text{cl.}} + a] \end{array}$$

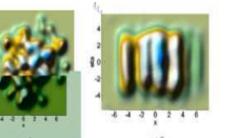
"Holy Grail"
Spectrum of small fluctuations

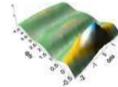
Can also compute event by event initial conditions to estimate flow fluctuations:

Fukushima,Gelis,McLerran (2006) $\left\langle T^{\mu_1\nu_1}(\tau_0,\eta_1,\vec{\pmb{x}}_{1\perp})T^{\mu_2\nu_2}(\tau_0,\eta_2,\vec{\pmb{x}}_{2\perp})\right\rangle$ $\left\langle T^{\mu_1\nu_1}(\tau_0,\eta_1,\vec{\pmb{x}}_{1\perp})T^{\mu_2\nu_2}(\tau_0,\eta_2,\vec{\pmb{x}}_{2\perp})T^{\mu_3\nu_3}(\tau_0,\eta_3,\vec{\pmb{x}}_{3\perp})\right\rangle$

Similar in spirit to the event by event hydro code

NeXSPheRIO = NeXus + SPheRIO





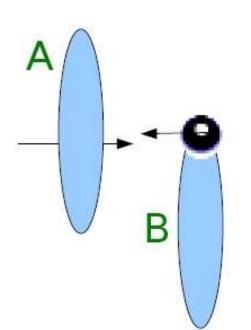
Grassi et al., arXiv:0912.0703

Dumitru

factorized KLN

<u>tKLN</u>

nucl-th/0605012 nucl-th/0611017



$$Q_{sB}^2 = Q_{sp}^2 T_B$$

$$T_B = \frac{\sum_{i \ge 0} p_i t_i}{\sum_{i \ge 1} p_i} = \frac{\langle T_B \rangle}{p_B}$$

$$\langle T_B \rangle (\vec{r}_{\perp}) = \int dz \; \rho_{WS}(z, \vec{r}_{\perp})$$

$$\phi_{B} = \phi(Q_{sp}^{2} \langle T_{B}(r_{t}) \rangle) ,$$

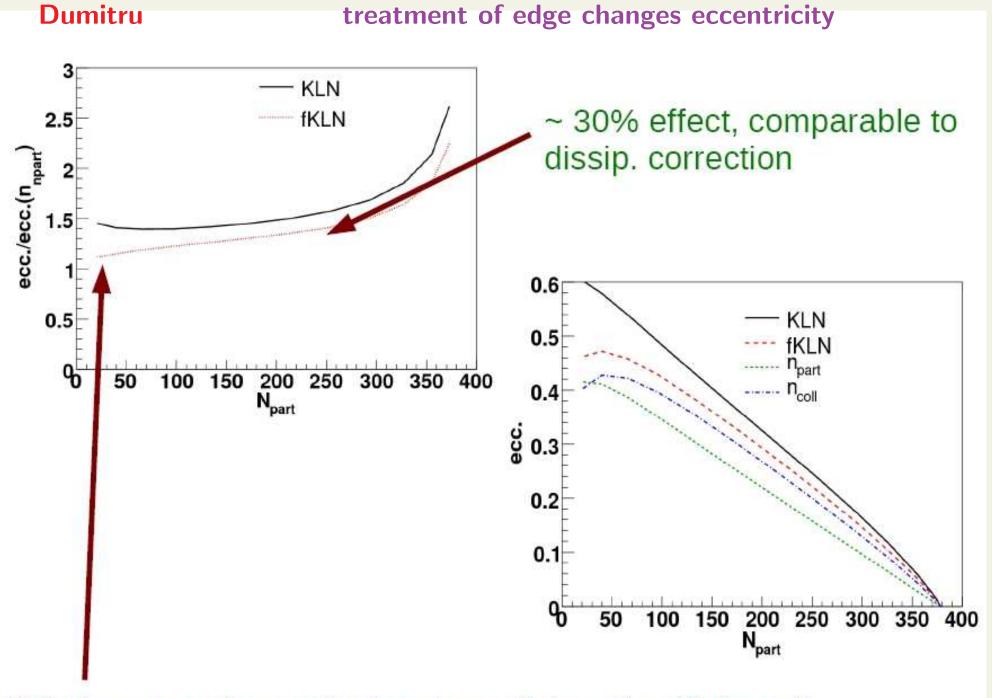
$$\phi_{B} = p_{B} \phi(Q_{sp}^{2})$$

$$\phi_{B} = q_{B} \phi(Q_{sp}^{2})$$

$$\phi_{B} = q_{B} \phi(Q_{sp}^{2})$$

$$\phi_B(\langle T_B \rangle) \to p_B \, \phi_B(\langle T_B \rangle/p_B)$$

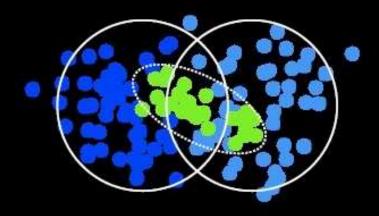
$$\frac{dN}{d^2r_{t}} \sim p_A \, \phi_A \otimes p_B \, \phi_B$$



fKLN approaches Glauber in peripheral collisions!

Cu+Cu

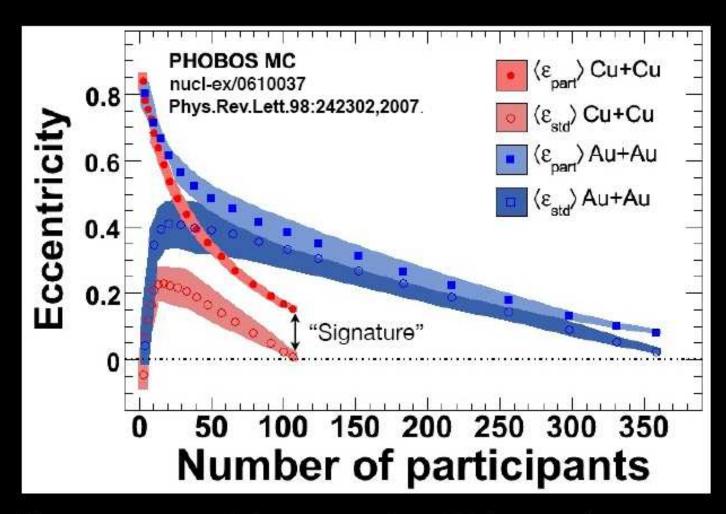
Principal axes make sense if v₂ depends on shape of produced matter (in SLP), not the reaction plane



$$\epsilon_{part} = \frac{\sigma_y'^2 - \sigma_x'^2}{\sigma_y'^2 + \sigma_x'^2} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4(\sigma_{xy}^2)^2}}{\sigma_y^2 + \sigma_x^2}$$

"Participant eccentricity"

Participant Vs. Standard



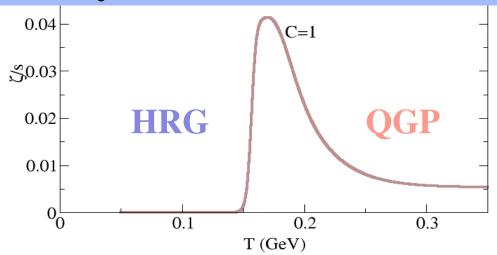
If you see ε~0 in central collisions, then you are using the wrong eccentricity, or not including fluctuations

Public Versioning is Fundamental

- MC-KLN is an example where clear versioning should be used on figures, but it applies to all initial state calculations
- Model: we always refer to PDFs by their full names in publications
 - MRST2004, CTEQ6.1M, EKS98, EPS08, etc.
- Our models of the initial state should be treated in the same way
 - TGlauberMC v1.2
 - MC-KLN vs. 1.01
- Then you are not just using "CGC" initial conditions, but a particular implementation
 - Will allow theory-to-theory comparisons as well as theory-toexperiment

bulk viscosity and relaxation time

Bulk viscosity:



Relaxation times: $\tau_{\Pi} \sim \zeta$ also peaks near Tc, this plays an important role for bulk viscous dynamics

N-S initialization: $\Pi_0 = -\zeta(\partial \cdot u)$

large τ_{Π} near T_c \longrightarrow keeps large negative value of Π in phase transition region \longrightarrow viscous hydro breaks down $(p+\Pi < 0)$ for larger ζ / s

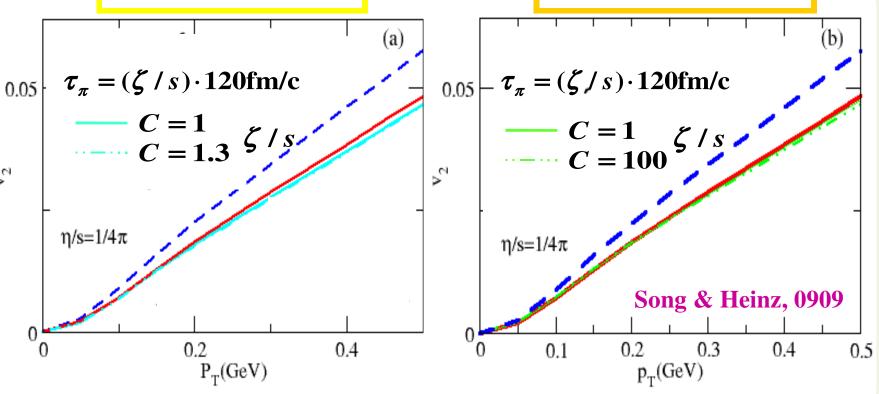
viscous hydro is only valid with small $\zeta/s \longrightarrow$ small bulk viscous effects on V_2

Song

Uncertainties from bulk viscosity

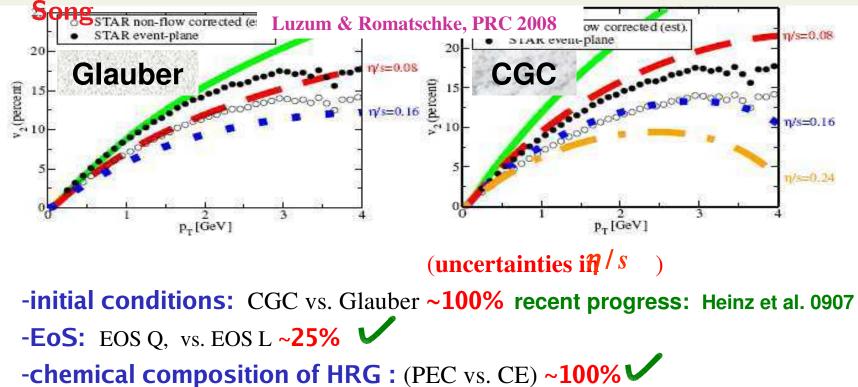
N-S initialization

Zero initialization



-with a critical slowing down au_{π} , effects from bulk viscosity effects are much smaller than from shear viscosity

```
bulk viscosity influences V_2 \sim 5\% (N-S initial.) <4% (zero initial.) 
 \rightleftharpoons uncertainties to \eta/s \sim 20\% (N-S initial.) <15% (zero initial.)
```



-viscosity of HRG (or equil. HRG vs. non-equil. HRG): ~100-150%

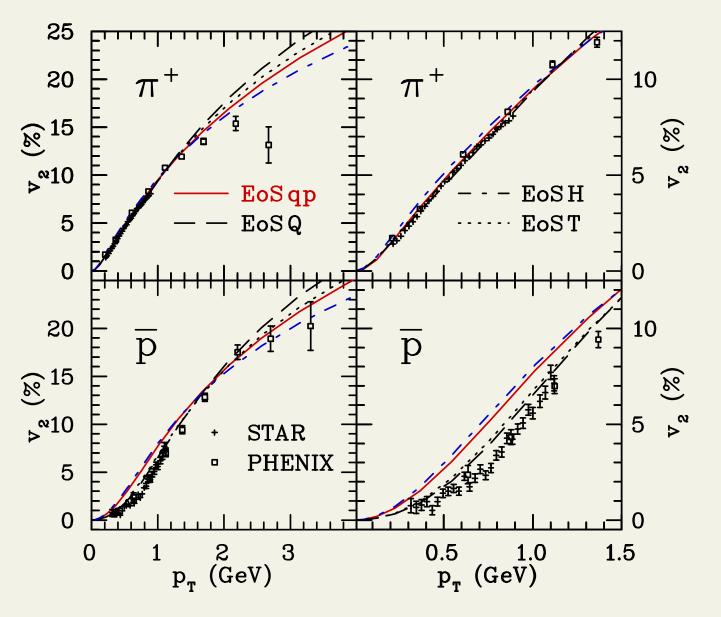
-bulk viscosity: ~20%

conservative upper limit: $\eta/s \le 5 \times (1/4\pi)$

-To further decrease the uncertainties from bulk viscosity, (or to extract both shear & bulk viscosity from exp. data), one need more sensitive exp. observables

May be worse, I think

Little difference between lattice EOS parameterization and a hadron gas!



Huovinen, NPA761, 296 ('05)

Q: bag model

qp: lattice fit $(T_c = 170 \text{ MeV})$

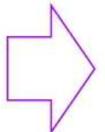
H: hadron gas

T: interpolated $\varepsilon(T)$ between hadron gas and $\varepsilon \propto T^4$ plasma

Viscous freezeout - "Delta f"

Introduction

How does viscosity affects observables?
 One needs a convertor of flow field into particles at freezeout hydro result observables

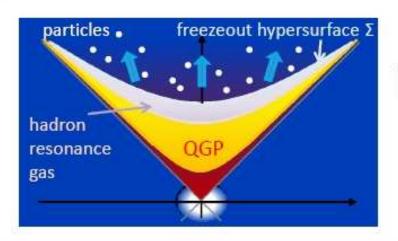


Cooper-Frye formula

$$\frac{d^2 N_i}{d^2 p_T dy} = \frac{g_i}{(2\pi)^3} \int_{\Sigma} p_i^{\mu} d\sigma_{\mu} (f_0^i + \delta f^i)$$

variation of the flow/hypersurface

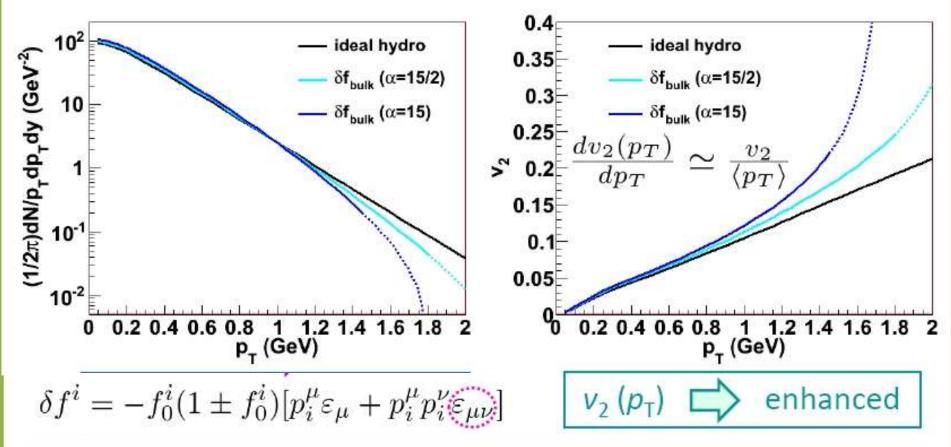
modification of the distribution



We need to estimate both δf^i and δu^μ in a multi-component system

Bulk Viscosity and Particle Spectra

■ Au+Au, $\sqrt{s_{NN}}=200({
m GeV})$, b = 7.2(fm), $p_{
m T}$ -spectra and $v_{
m 2}(p_{
m T})$ of π^-



Even "small" bulk viscosity may have significant effects on particle spectra

Denicol

hydro from kinetic theory for multicomponent system

Solution

$$f_{(i)}(p) = f_{0(i)} \left[1 + (1 \mp f_{0(i)}) \left(\varepsilon_{(i)} + \varepsilon_{\mu(i)} p_{(i)}^{\mu} + \varepsilon_{\mu\nu(i)} p_{(i)}^{\mu} p_{(i)}^{\nu} \right) \right]$$

$$\begin{split} & \varepsilon_{(i)} = E_{0(i)} \Pi_{(i)} \\ & \varepsilon_{(i)}^{\mu} = D_{0(i)} \Pi_{(i)} u^{\mu} + D_{1(i)} q_{(i)}^{\mu} + D_{2(i)} v_{(i)}^{\mu} \\ & \varepsilon_{(i)}^{\mu\nu} = B_{0(i)} \left(\Delta^{\mu\nu} - 3u^{\mu}u^{\nu} \right) \Pi_{(i)} + 2B_{1(i)} u^{(\mu} q_{(i)}^{\nu)} + 2B_{3(i)} u^{(\mu} v_{(i)}^{\nu)} + B_{2(i)} \pi_{(i)}^{\mu\nu} \end{split}$$

$$B_{2(i)} = \frac{1}{2J_{42(i)}}$$
 \longrightarrow shear viscosity

Boltzmann Gas

$$B_{2(i)} = \frac{1}{2(\varepsilon_{(i)} + P_{(i)})T^2}$$

$$J_{nq(i)} = \frac{1}{(2q-1)!!} \int d\omega_{(i)} E_{(i)}^{n-2q} K^{2q} f_{0(i)} \left(1 \quad af_{0(i)} \right)$$

G. Denicol

Tech-qm

Denicol

Closed Equations – Bulk and Shear

$$\begin{split} \frac{d\Pi_{(i)}}{d\tau} + \frac{\Pi_{(i)}}{\tau_{\Pi(i)}} + \sum_{j \neq i} \frac{\Pi_{(j)}}{\tau_{\Pi(i)(j)}} \; = \; - \left(\beta_{\zeta(i)} + \zeta_{\Pi\Pi(i)}\Pi_{(i)}\right)\theta + \zeta_{\Pi\pi(i)}\pi_{(i)}^{\mu\nu}\sigma_{\mu\nu} \\ - \zeta_{\Pi n(i)}\partial_{\mu}n^{\mu} - \alpha_{\Pi n(i)}n_{(i)}^{\mu}\dot{u}_{\mu} - \beta_{\Pi n(i)}n_{(i)}^{\mu}\nabla_{\mu}\alpha_{0(i)} \\ - \zeta_{\Pi q(i)}\partial_{\mu}q^{\mu} - \alpha_{\Pi q(i)}q_{(i)}^{\mu}\dot{u}_{\mu} - \beta_{\Pi q(i)}q_{(i)}^{\mu}\nabla_{\mu}\alpha_{0(i)} \end{split}$$

$$\frac{d\pi_{(i)}^{\langle\mu\nu\rangle}}{d\tau} + \frac{\pi_{(i)}^{\mu\nu}}{\tau_{\pi(i)}} + \sum_{j\neq i} \frac{\pi_{(j)}^{\mu\nu}}{\tau_{\pi(i)(j)}} = 2\left(\beta_{\eta(i)} + \eta_{\pi\Pi(i)}\Pi_{(i)}\right)\sigma^{\mu\nu} - 2\eta_{\pi\pi(i)}\pi_{\alpha(i)}^{\langle\mu}\sigma^{\nu\rangle\alpha} + 2\pi_{\alpha(i)}^{\langle\mu}\omega^{\nu\rangle\alpha} - \left(\frac{1}{2} + \frac{7}{6}\eta_{\pi\pi(i)}\right)\pi_{(i)}^{\mu\nu}\theta + 2\eta_{\pi\pi(2)(i)}\nabla^{\langle\mu}n_{(i)}^{\nu\rangle} + 2\beta_{\pi\pi(i)}n_{(i)}^{\langle\mu}\nabla^{\nu\rangle}\alpha_{0(i)} - 2\alpha_{\pi\pi(i)}n_{(i)}^{\langle\mu}\dot{u}^{\nu\rangle} + 2\eta_{\pi q(2)(i)}\nabla^{\langle\mu}q_{(i)}^{\nu\rangle} + 2\beta_{\pi q(i)}q_{(i)}^{\langle\mu}\nabla^{\nu\rangle}\alpha_{0(i)} - 2\alpha_{\pi q(i)}q_{(i)}^{\langle\mu}\dot{u}^{\nu\rangle} + 2\eta_{\pi q(2)(i)}\nabla^{\langle\mu}q_{(i)}^{\nu\rangle} + 2\beta_{\pi q(i)}q_{(i)}^{\langle\mu}\nabla^{\nu\rangle}\alpha_{0(i)} - 2\alpha_{\pi q(i)}q_{(i)}^{\langle\mu}\dot{u}^{\nu\rangle}$$

Eqs. will depend on $\Pi_{(i)}, q_{(i)}^{\mu}, \pi_{(i)}^{\mu\nu}, \nu_{(i)}^{\mu}$ MORE variables!

 Π , q^{μ} , $\pi^{\mu\nu}$, ν^{μ}_{r} (possible?)

G. Denicol

in general - for one-component massless gas, with viscous shear only

$$\delta f \equiv f_{eq} \times C(\chi) \, \pi^{\mu\nu} \, \frac{p_{\mu} p_{\nu}}{T^2} \, \chi(\frac{p}{T})$$

from Grad's ansatz: $\chi \equiv 1$

this was a starting point in deriving IS hydro from kinetic theory

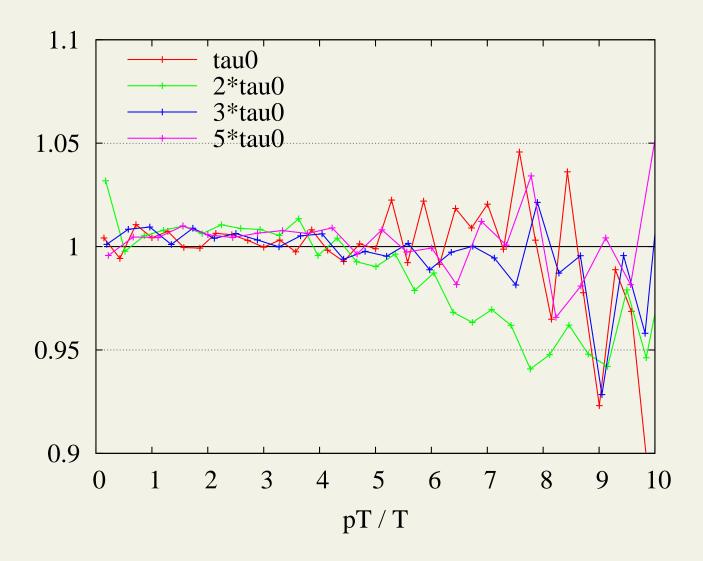
from linear response: $\chi(x) \sim x^{\alpha}$ with $-1 \lesssim \alpha \lesssim 0$ Dusling, Teaney, Moore, ('09)

 δf blows up at large momenta \Rightarrow approximation breaks down

transport can tell how far in momenta we can trust these...

ratio - transport spectra / Grad approximation $\eta/s \sim 0.08$

DM ('09):

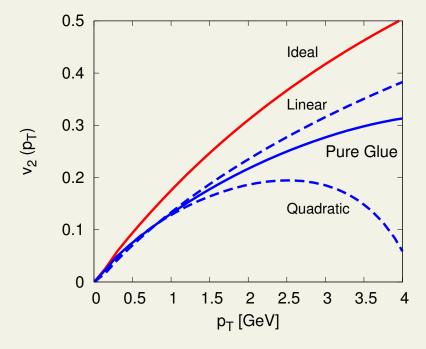


spectra are few-percent accurate even at $p_T/T=6(!)$

Teaney

Phenomenological Summary

pure glue, $\eta/s=0.08, e_{\mathrm{frz}}=0.6\,\mathrm{GeV/fm^3}$



pQCD is closer to a linear ($au_R = ext{const}$) rather than a quadratic ansatz

how high in pT can one trust this? (no jets)

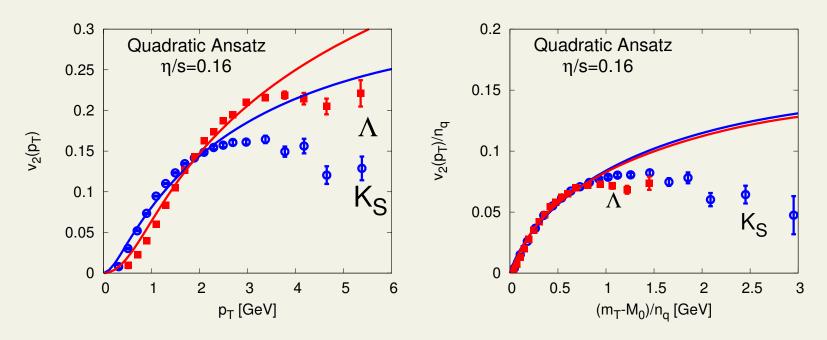
Teaney

Teaney

 $\sigma_B/\sigma_M pprox 1.5$ works - just like additive quark model for <code>Bleicher</code>

et al..

Scaling



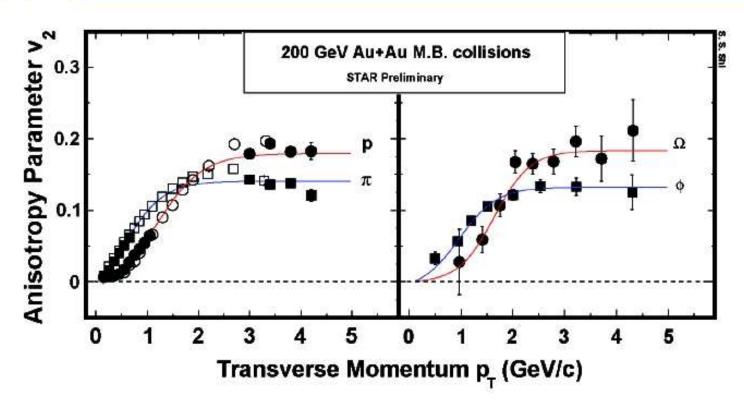
Perhaps quark number scaling is simply Relaxation Time Scaling (RTS)

$$au_{M,B} \propto 1/\sigma_{M,B}$$

Teaney

Tang (STAR)

Partonic Collectivity

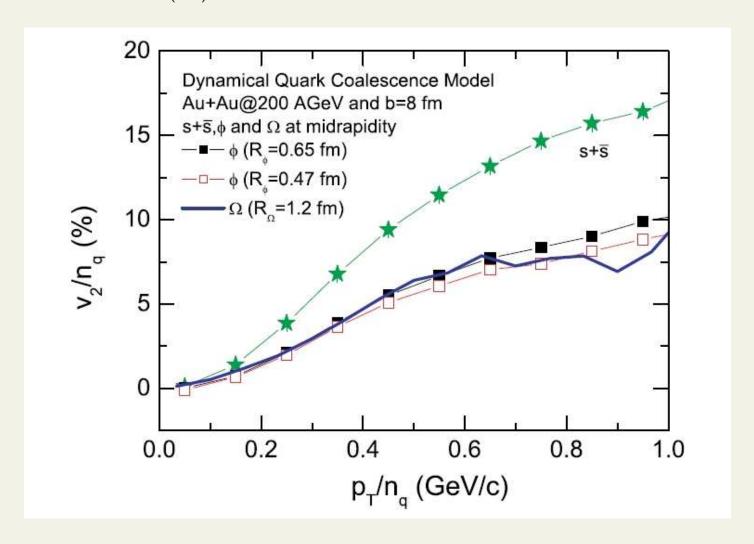


PHENIX π and p: nucl-ex/0604011v1 NQ inspired fit: X. Dong et al. Phy. Let. B 597 (2004) 328-332

Partonic collectivity at RHIC: case closed.

closed - really?

simple scaling formulas do not follow from a dynamical coalescence approach Chen & Ko, PRC73 ('06)



Viscous hydro revisions

Third order hydrodynamics

$$s^{\mu} = s_0 u^{\mu} - \beta_2 \pi_{\mu\nu} \pi^{\mu\nu} \frac{u^{\mu}}{2T} + \alpha \beta_2^2 \pi_{\alpha\beta} \pi_{\sigma}^{\alpha} \pi^{\beta\sigma} \frac{u^{\mu}}{T}$$

$$Israel-Stewart$$

$$T \, \partial_{\mu} s^{\mu} = \pi_{\mu\nu} \left(\sigma^{\mu\nu} - \beta_{2} \dot{\pi}^{\mu\nu} - \frac{1}{2} \, T \, \partial_{\alpha} (\frac{\beta_{2}}{T} u^{\alpha}) \pi^{\mu\nu} \right) +$$

$$+ \alpha \, T \, \pi_{\alpha\beta} \pi_{\sigma}^{\alpha} \pi^{\beta\sigma} \, \partial_{\mu} (\beta_{2}^{2} \frac{u^{\mu}}{T}) + 3 \, \alpha \, \beta_{2}^{2} \pi_{\alpha\beta} \pi_{\sigma}^{\alpha} \dot{\pi}^{\beta\sigma}$$

with
$$\sigma^{\mu\nu} = \nabla^{<\mu} u^{\nu>}$$
 and $\dot{\pi}^{\alpha\beta} = u^{\mu} \partial_{\mu} \pi^{\alpha\beta}$

Enforcing the second law of thermodynamics $\partial_{\mu} s^{\mu} \ge 0$, one obtains a third-order evolution equation for $\pi^{\mu\nu}$ (s. arXiv:0907.4500 for details)

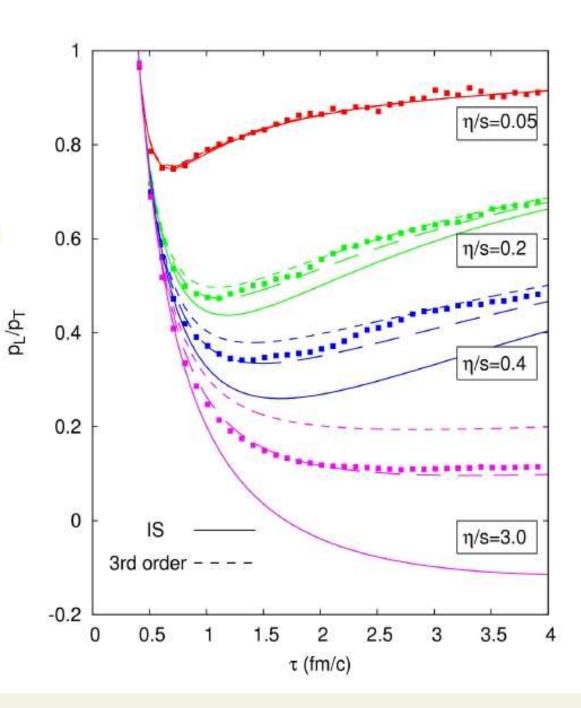
Hydro vs BAMPS

$$\dot{\pi} = -\frac{\pi}{\tau_{\pi}} - \frac{4}{3} \frac{\pi}{\tau} + \frac{8}{27} \frac{e}{\tau} - 3 \frac{\pi^2}{e\tau}$$

$$\dot{\pi} = -\frac{\pi}{\tau_{\pi}} - \frac{4}{3} \frac{\pi}{\tau} + \frac{8}{27} \frac{e}{\tau} - \frac{5}{3} \frac{\pi^2}{e\tau}$$

Including "higher-orders":

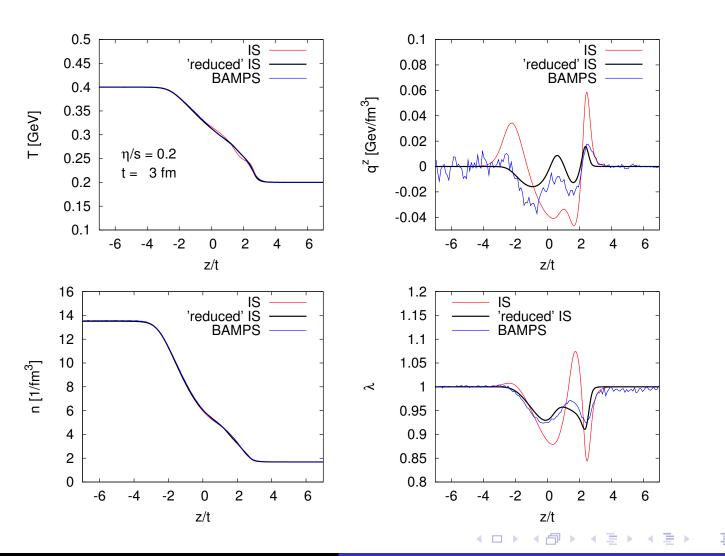
HO terms are taken by maximum value → good agreement at maximum dissipation



Outline
Introduction
Riemann problem: Perfect fluid solution
Solutions with shock wave
Summary

Riemann problem smoothed Riemann problem smoothed Riemann problem: shock front smoothed Riemann problem: Heat flow

smoothed Riemann problem: Heat flow $\eta/s = 0.2 \ t = 3.0 \ \text{fm}$



990

Niemi - maybe Israel-Stewart is not the right theory?

Outline
Introduction
Riemann problem: Perfect fluid solution
Solutions with shock wave
Summary

Boltzmann equation Israel-Stewart equations from the kinetic theory Israel-Stewart equations in 1+1 dimensions

Israel-Stewart equations from the kinetic theory $(\Pi = 0)$

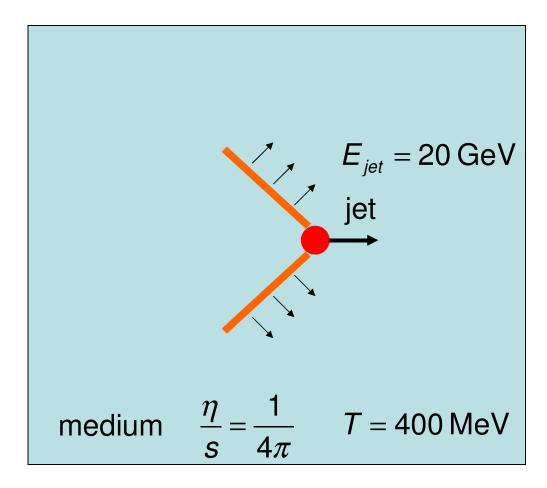
$$\begin{split} \Delta^{\mu}_{\lambda} D q^{\lambda} &= -\frac{1}{\tau_{q}} \left[q^{\mu} + \kappa_{q} \frac{T^{2} n}{e + p} \nabla^{\mu} \left(\frac{\mu}{T} \right) \right] - \frac{1}{2} q^{\mu} \left(\nabla_{\lambda} u^{\lambda} + D \ln \frac{\beta_{1}}{T} \right) \\ &- \omega^{\mu \lambda} q_{\lambda} + A_{1} \sigma^{\mu \lambda} q_{\lambda} - \frac{a_{1}}{\beta_{1}} \pi^{\lambda \mu} D u_{\lambda} + \frac{\alpha_{1}}{\beta_{1}} (\partial_{\lambda} \pi^{\lambda \mu} + u^{\mu} \pi^{\lambda \nu} \partial_{\lambda} u_{\nu}) \\ D \pi^{\langle \mu \nu \rangle} &= -\frac{1}{\tau_{\pi}} \left(\pi^{\mu \nu} - 2 \eta \nabla^{\langle \mu} u^{\nu \rangle} \right) - \frac{1}{2} \pi^{\mu \nu} \left(\nabla_{\lambda} u^{\lambda} + D \ln \frac{\beta_{2}}{T} \right) \\ &+ 2 \pi_{\lambda}^{\langle \mu} \omega^{\nu \rangle \lambda} - 2 \pi_{\lambda}^{\langle \mu} \sigma^{\nu \rangle \lambda} - \frac{\alpha_{1}}{\beta_{2}} \nabla^{\langle \mu} q^{\nu \rangle} + \frac{a_{1}'}{\beta_{2}} q^{\langle \mu} D u^{\nu \rangle} \\ &+ A_{2} q^{\langle \mu} \nabla^{\nu \rangle} \frac{\mu}{T} \end{split}$$

- ▶ All terms from the framework of Israel and Stewart included
- Equations without red terms refered as 'reduced' IS equation
- Not yet complete IS (would need $O(\varepsilon^2)$ in f(x,p))

Xu

from parton transport BAMPS

3. Mach Cone Formation



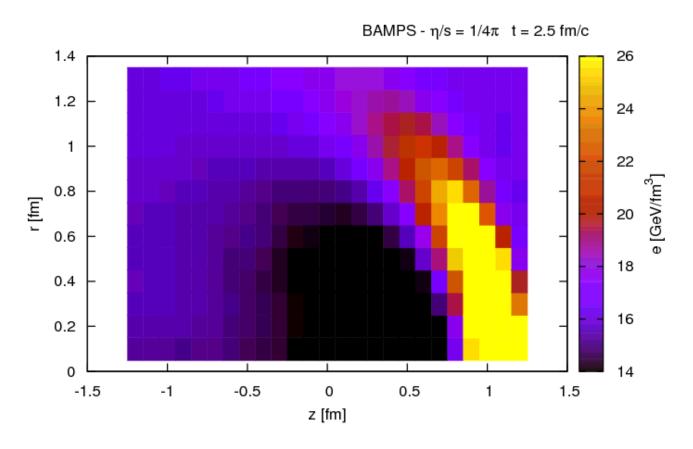
interactions: 2 -> 2 with isotropic distribution of the collision angle

Zhe Xu

Xu from parton transport BAMPS

3. Mach Cone Formation

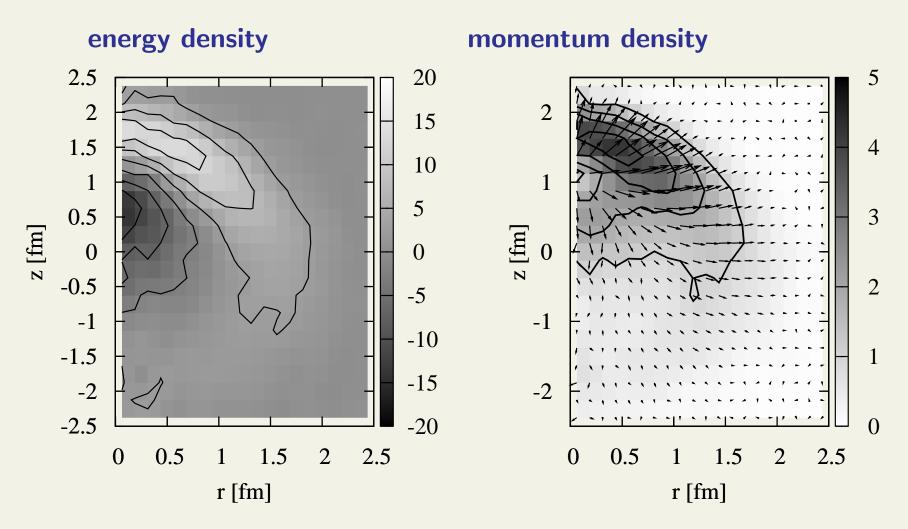
local energy density



by I. Bouras, F. Lauciello et al.

Zhe Xu

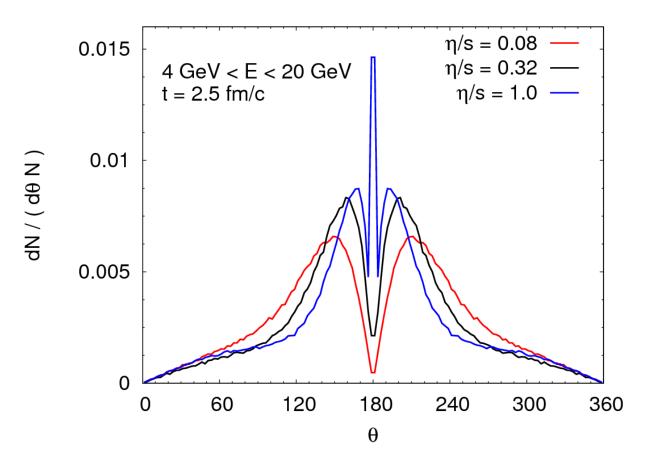
very similar to results from MPC DM, arXiv:0908.0299



(isotropic $2\to 2$ transport, dE/dx=68 GeV/fm, $\lambda_{MFP}=0.125$ fm, T=0.385 GeV, v=0.9)

sensitive to viscosity

3. Mach Cone Formation



viscous effect: enlarge the mach angle

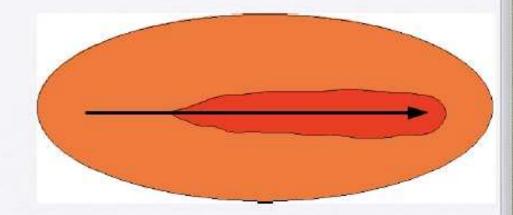
Comparisons with viscous hydro calculations will follow.

Zhe Xu

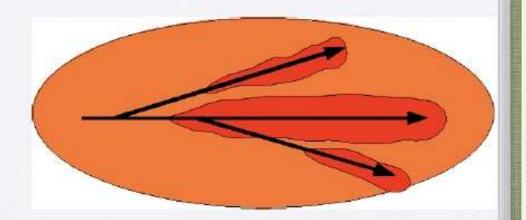
construct more realistic source

How about multiple partons

A single parton deposits energy and transverse momentum in medium. This just \hat{q} and \hat{e}



multiple radiation increases
the sources of mom. dep.
We know how much radiation
as we already calculated it
for energy loss



Can this be rigorously calculated?

The Results!

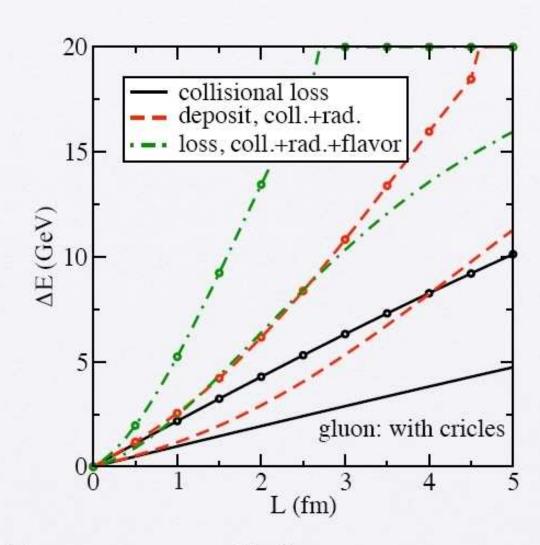
Need an input dE/dL

just for now, use an HTL form

$$\frac{dE}{dL} = \frac{C_R \alpha_s m_D^2}{2} \log \left(\frac{\sqrt{4ET}}{m_D} \right)$$

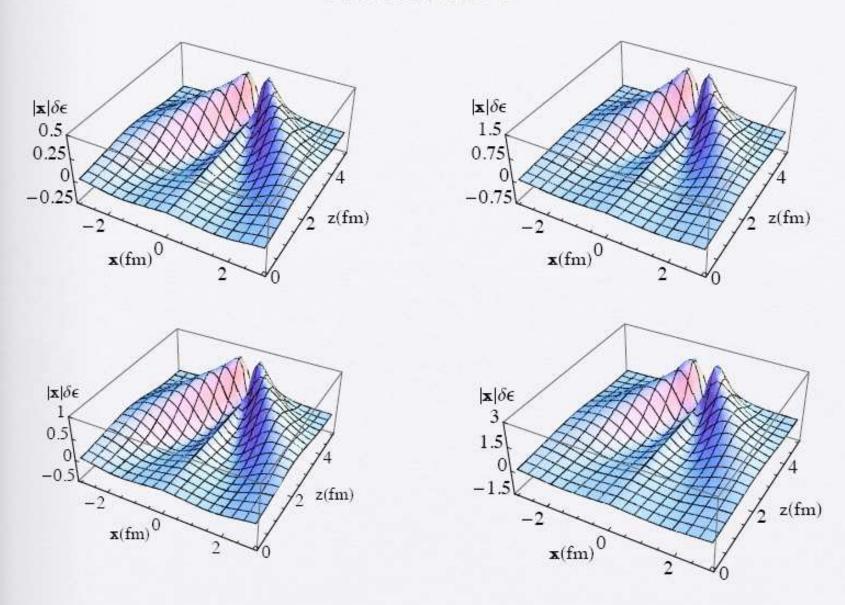
$$T=300 \text{ MeV}$$

 $E=20 \text{ GeV}$



The energy deposition rate grows with distance Only a part of total E_{lost} is deposited!

The results: II



Depositing the energy at the end enhances the Mach cone!

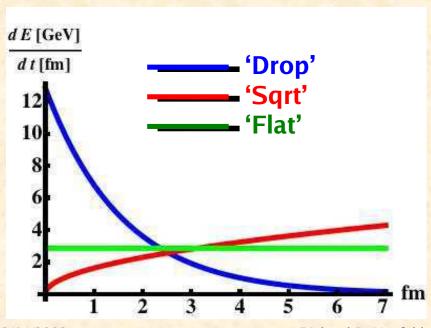
Neufeld very similar study Compare the emission spectrum for:

$$\lambda = 0, 0.25, 0.5, 0.75, 1.0 \text{ fm}$$

$$\frac{\eta}{s} = 0.05, \, 0.10, \, 0.15$$

$$T = 250 \text{ MeV}, c_s = 0.57$$

And different forms for dE/dt:

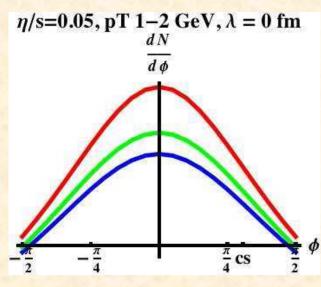


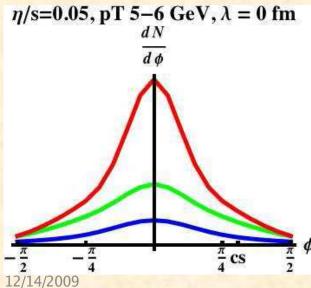
In each case, the total energy deposited is 20 GeV, but each shape is motivated by different physics

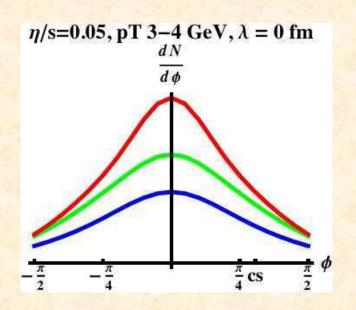
12/14/2009

Richard B. Neufeld, LANL

Neufeld "crescendo" gives strongest signal The spectrum for lambda = 0, eta/s = 0.05







qualitatively similar

even though \sqrt{t} growth does not agree with Majumder's result...

Richard B. Neufeld, LANL

Summary

Progress on several fronts:

- matter properties (EOS, hadron gas transport coeffs)
- initial conditions (fluctuations)
- viscous hydro (results for bulk viscosity, tests of Israel-Stewart, revised formulations)
- viscous freezeout, mixtures
- Mach cones

Still more work remains...

stay tuned for exciting new results at the next CATHIE-TECHQM meeting most likely sometime Fall 2010